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Fig. 2. Example of a tree of reactionary delay with 4 levels. In this case the
delay per flight diminish downstream. ρ is the reproductive number of each
flight.

is removed. As noted in Ref. [14] this can be understood
as a percolation process, thus as shown in Ref. [15] it is
possible to derive exact analytical solutions for node and edge
percolation (removal of a fraction of edges). In networks where
the dynamics play a crucial role an initial disturbance can
trigger a cascade of subsequent failures [16]. Such is the case
in power grids [17], [18] or air transportation networks [19],
[20]. This dynamic effect is enhanced by networks coupled
together, the so called multiplex networks [21], [19]; where
the failure of elements in one network can lead to a branching
process affecting elements of other networks in a recursive
way.

In this paper, we tackle the problem of the air transportation
network robustness using US performance data. Instead of
a structural view, we focus here on the robustness of the
system dynamics. In particular, we consider our model of delay
propagation described in Ref. [11]. In this case, the initial
disruption is given by one or several delayed flights (when
considered the airport disruption) that later, as the flight opera-
tions continue, can spread and multiply producing a cascade of
reactionary delays. We therefore consider the initial disruption
as a primary delay [22], [23] and the subsequent cascade
as reactionary delays [24], [25]. As shown in Ref. [11] this
ripple effect is boosted by the network connectivity through the
aircraft rotation and crew and passenger connections between
flights. Based on these findings, we define metrics able to
assess the robustness of the network when a delay impact
is produced by an individual delayed flight or a congested
airport. Given that the events in the model are fully traceable,
we develop a cause-effect analysis allowing us to reconstruct
the trees of reactionary delay [24].

II. DATA SOURCES & MODELING FRAMEWORK

A detailed description of the modeling framework is pro-
vided at [11]. The delay propagation model uses delay data
obtained from the Bureau of Transport Statistics (BTS) [26].
In particular, the information was obtained from the Airline
On-time Performance Data. The database is constructed with
the information provided by the 18th largest US certified

air carriers with respect to the domestic scheduled passenger
revenues. The database includes flight information for roughly
the 76% of the total number of scheduled flights in the US
including for each of them several performance measures.
However, for modeling purposes we only use the date of flight,
scheduled and arrival times, aircraft and airline identification
codes, flight origin and destination. Cancellations and diverted
flights are not used in the model. In this sense, we do not take
these flights into account and the days selected for modeling
are those with a relatively low fraction of canceled and diverted
flights. Our assumption is that the flight data resembles the a
priori airlines’ schedules. Therefore, with the aircraft code and
the spatio-temporal localization of the flights obtained from
the data, we can reconstruct the aircraft itineraries and conse-
quently the airline schedules throughout the day. Under these
assumptions, we use data from the 13th of July 2012. This
day showed a high level of congestion, which according to
the news was not imputable to meteorological [27], technical
or labour causes. In Figure 1 we reconstructed the US airport
network (USAN) for the selected day. As mentioned in the
introduction, network nodes represent airports while the edges
direct daily flights between them.

The schedule for the day is used as the model input.
Therefore the model reproduces the flight dynamics given by
the real planning of the day. Hence, each agent (aircraft) is
tracked using its identifier code with a temporal resolution of
one minute until the schedule of the selected day is fulfilled.
Obviously if there is no disruption (primary delay) regarding
the planning, the day would be completed without any in-
convenience. The flight fluxes are generated following three
microscopic sub-processes that rule the agents’ reaction to
each other and the system: aircraft rotation, flight connectivity
and airport congestion. The rotation is the itinerary of each
aircraft throughout the day, i.e. it goes from airport A to B
and then to C following the schedule arrival and departure
times. An aircraft rotation is completed when all the previous
flight legs have been fulfilled sequentially. A flight is not
considered finished while the aircraft is in the gate-to-gate
phase, which comprehends the taxi-in, taxi-out and airborne
time. During this phase, it is not possible to absorb any delay.
Consequently, in the model, arrival and departure delay are
the same. Whenever the aircraft is attached to the gate (turn-
around phase) it is possible to reduce inbound delay provided
that there is sufficient slack time to absorb it. In addition,
in the turn-around phase and after the flight has arrived, the
aircraft has to comply with a minimum service time for ground
operations (in the model is set at 20 min).

With flight connectivity, we account for crew and passenger
connections between flights of the same airline. We do not
have information of passenger connections and, therefore, a
stochastic mechanism to connect flights is implemented taking
into account airport connectivity levels obtained from another
BTS dataset. Namely, the annual fraction of connecting pas-
sengers for each airport were collected from the DB1B Ticket
and T100 Domestic Market repositories. Importantly, we make
the assumption that crew connectivity is closely related with
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the randomly selected flights affect to 95% of the airlines.
These results merely confirm what was observed in Figure 5,
although we would have expected the destination airport to be
another key aspect of high impact flights.

V. CONCLUSION

In summary, we have defined a set of measures to assess
the susceptibility of the different elements that compose the air
transportation system. We explore the response of the system
by means of impact and robustness to perturbations at different
system levels; namely, at the airport and at the individual flight
level. We find that the airport impact on the system has no clear
relation to airport size (number of different destinations of the
flights leaving the airport). In addition, we show that hubs
are more vulnerable to perturbations throughout the system
than medium and small sized airports. Among other results,
we explore the influence of the airline and time of the day
of the initially perturbed flights. Results display a dependence
on the airline the flight belongs to, specially with regards to
high impact flights. Also perturbations that start in the morning
have higher impact than those in the afternoon because of a
larger temporal cone of events. However, perturbations that
start in the early hours of the day are an exception because of
a relatively lower average reproductive number. Thus, we can
conclude that the interplay between the airline connectivity
pattern and the time of the day are two major causes of
the different behaviors encountered in dynamics of delay
propagation at the individual flight level.
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